Curvature terms

The curvature (Coriolis) terms have slightly different forms depending on the projections. They are expressed for the latitude-longitude projection as

$\displaystyle f_{u,crv} =$ $\displaystyle v \left[ f +
{\frac{u}{R_e}} {\rm tan}\left(\phi_r\right) \right]
- w \left( \frac{u}{R_e} + e \right)$ (300)
$\displaystyle f_{v,crv} =$ $\displaystyle -u \left[ f +
{\frac{u}{R_e }} {\rm tan}\left(\phi_r\right) \right]
- \frac{v \, w}{R_e}$ (301)
$\displaystyle f_{w,crv} =$ $\displaystyle \frac{\left(v^2 + u^2\right)}{R_e} + e\,u$ (302)

For a conformal projection ($m_x=m_y=m$), the curvature terms can be expressed as

$\displaystyle f_{u,crv} =$ $\displaystyle v
\left( f +
u {\frac{\partial m}{\partial y}} - v {\frac{\partial m}{\partial x}}
\right)
\,-\, e \, w
\,-\, \frac{u \, w}{R_e}$ (303)
$\displaystyle f_{v,crv} =$ $\displaystyle -u \left( f +
u {\frac{\partial m}{\partial y}} - v {\frac{\partial m}{\partial x}}
\right)
\,-\, \frac{v \, w}{R_e}$ (304)
$\displaystyle f_{w,crv} =$ $\displaystyle e \, u \,+\,
\left(
\frac{u^2 + v^2}{R_e}
\right)$ (305)

where the Coriolis parameter, $f$, is defined as

$\displaystyle f = 2 {\rm sin}\left(\phi_r\right) \Omega_r$ (306)

and the curvature term factor is

$\displaystyle e = 2 {\rm cos}\left(\phi_r\right) \Omega_r$ (307)

where $\Omega_r=2\pi/86400$.



Subsections